Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.103
Filtrar
1.
Stem Cell Res Ther ; 15(1): 93, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561834

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS: We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS: Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION: These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.


Assuntos
Espermatogônias , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Transdiferenciação Celular , Células Cultivadas , Células-Tronco/metabolismo
2.
J Cardiothorac Surg ; 19(1): 208, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616256

RESUMO

BACKGROUND: Cardiac fibroblasts (CFs) are activated after initial injury, and then differentiate into myofibroblasts (MFs), which play a pivotal role as the primary mediator cells in pathological remodeling. Sodium butyrate (NaB), being a metabolite of gut microbiota, exhibits anti-inflammatory property in local therapies on sites other than the intestine. Thus, this study aimed to probe the mechanism by which NaB regulates CFs transdifferentiation through the NLRP3/Caspase-1 pyroptosis pathway. METHODS: CFs were cultured in vitro and induced into MFs by TGFß1. CFs were identified by immunofluorescence labelling technique of vimentin and α-SMA, followed by treatment with NaB or NLRP3 inflammasome inhibitor (CY-09) and its activator [nigericin sodium salt (NSS)]. The expression levels of α-SMA, GSDMD-N/NLRP3/cleaved Caspase-1 proteins, and inflammatory factors IL-1ß/IL-18/IL-6/IL-10 were determined using immunofluorescence, Western blot and ELISA. Cell proliferation and migration were evaluated using the CCK-8 assay and the cell scratch test, respectively. RESULTS: Following the induction of TGFß1, CFs exhibited increased expression levels of α-SMA proteins and IL-6/IL-10, as well as cell proliferative and migratory abilities. TGFß1 induced CFs to differentiate into MFs, while NaB inhibited this differentiation. NaB inactivated the NLRP3/Caspase-1 pyroptosis pathway. CY-09 demonstrated inhibitory effects on the NLRP3/Caspase-1 pyroptosis pathway, leading to a reduction in TGFß1-induced CFs transdifferentiation. NSS activated the NLRP3/Caspase-1 pyroptosis pathway, and thus partially counteracting the inhibitory effect of intestinal microbiota metabolite NaB on CFs transdifferentiation. CONCLUSION: NaB, a metabolite of the gut microbiota, inhibited the activation of the NLRP3/Caspase-1 pyroptosis pathway in TGFß1-induced CFs, repressed the transdifferentiation of CFs into MFs.


Assuntos
Microbioma Gastrointestinal , Humanos , Caspase 1 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Butírico , Interleucina-10 , Transdiferenciação Celular , Interleucina-6 , Piroptose , Fibroblastos
3.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652107

RESUMO

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Diferenciação Celular/genética , Animais , Hematopoese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Desenvolvimento Embrionário/genética , Transdiferenciação Celular/genética , Humanos
4.
PLoS One ; 19(3): e0299821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517864

RESUMO

Pancreatic ß-cell failure is a pathological feature in type 1 diabetes. One promising approach involves inducing transdifferentiation of related pancreatic cell types, specifically α cells that produce glucagon. The chemokine stromal cell-derived factor-1 alpha (SDF-1α) is implicated in pancreatic α-to-ß like cell transition. Here, the serum level of SDF-1α was lower in T1D with C-peptide loss, the miR-23a was negatively correlated with SDF-1α. We discovered that exosomal miR-23a, secreted from ß cells, functionally downregulates the expression of SDF-1α, leading to increased Pax4 expression and decreased Arx expression in vivo. Adenovirus-vectored miR-23a sponge and mimic were constructed to further explored the miR-23a on pancreatic α-to-ß like cell transition in vitro, which yielded results consistent with our cell-based assays. Suppression of miR-23a upregulated insulin level and downregulated glucagon level in STZ-induced diabetes mice models, effectively promoting α-to-ß like cell transition. Our findings highlight miR-23a as a new therapeutic target for regenerating pancreatic ß cells from α cells.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , MicroRNAs , Animais , Camundongos , Transdiferenciação Celular/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Glucagon , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Life Sci ; 343: 122543, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460812

RESUMO

AIM: The secretome of mesenchymal stem cells (MSCs) could be a potential therapeutic intervention for diabetes and associated complications like nephropathy. This study aims to evaluate the effects of conditioned mediums (CMs) collected from umbilical cord-derived MSCs incubated under 2-dimensional (2D) or 3D culture conditions on kidney functions of rats with type-I diabetes (T1D). MAIN METHODS: Sprague-Dawley rats were treated with 20 mg/kg streptozocin for 5 consecutive days to induce T1D, and 12 doses of CMs were applied intraperitoneally for 4 weeks. The therapeutic effects of CMs were comparatively investigated by biochemical, physical, histopathological, and immunohistochemical analysis. KEY FINDINGS: 3D-CM had significantly higher total protein concentration than the 2D-CM Albumin/creatinine ratios of both treatment groups were significantly improved in comparison to diabetes. Light microscopic evaluations showed that glomerular and cortical tubular damages were significantly ameliorated in only the 3D-CM applied group compared to the diabetes group, which were correlated with transmission electron microscopic observations. The nephrin and synaptopodin expressions increased in both treatment groups compared to diabetes. The WT1, Ki-67, and active caspase-3 expressions in glomeruli and parietal layers of the treatment groups suggest that both types of CMs suppress apoptosis and promote possible parietal epithelial cells' (PECs') transdifferentiation towards podocyte precursor cells by switching on WT1 expression in parietal layer rather than inducing new cell proliferation. SIGNIFICANCE: 3D-CM was found to be more effective in improving kidney functions than 2D-CM by ameliorating glomerular damage through the possible mechanism of transdifferentiation of PECs into podocyte precursors and suppressing glomerular apoptosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias , Células-Tronco Mesenquimais , Podócitos , Ratos , Animais , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Transdiferenciação Celular , Ratos Sprague-Dawley , Células Epiteliais/metabolismo , Nefropatias/patologia
6.
Medicine (Baltimore) ; 103(13): e37595, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552064

RESUMO

BACKGROUND: Skin grafting is a common method of treating damaged skin; however, surgical complications may arise in patients with poor health. Currently, no effective conservative treatment is available for extensive skin loss. Mature adipocytes, which constitute a substantial portion of adipose tissue, have recently emerged as a potential source of stemness. When de-lipidated, these cells exhibit fibroblast-like characteristics and the ability to redifferentiate, offering homogeneity and research utility as "dedifferentiated fat cells." METHODS AND RESULTS: We conducted an in vitro study to induce fibroblast-like traits in the adipose tissue by transdifferentiating mature adipocytes for skin regeneration. Human subcutaneous fat tissues were isolated and purified from mature adipocytes that underwent a transformation process over 14 days of cultivation. Microscopic analysis revealed lipid degradation over time, ultimately transforming cells into fibroblast-like forms. Flow cytometry was used to verify their characteristics, highlighting markers such as CD90 and CD105 (mesenchymal stem cell markers) and CD56 and CD106 (for detecting fibroblast characteristics). Administering dedifferentiated fat cells with transforming growth factor-ß at the identified optimal differentiation concentration of 5 ng/mL for a span of 14 days led to heightened expression of alpha smooth muscle actin and fibronectin, as evidenced by RNA and protein analysis. Meanwhile, functional validation through cell sorting demonstrated limited fibroblast marker expression in both treated and untreated cells after transdifferentiation by transforming growth factor-ß. CONCLUSION: Although challenges remain in achieving more effective transformation and definitive fibroblast differentiation, our trial could pave the way for a novel skin regeneration treatment strategy.


Assuntos
Desdiferenciação Celular , Transdiferenciação Celular , Humanos , Projetos Piloto , Desdiferenciação Celular/fisiologia , Tecido Adiposo , Adipócitos/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Células Cultivadas
7.
Chin Med J (Engl) ; 137(7): 791-805, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479993

RESUMO

ABSTRACT: Pancreatic ß-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing ß-cells and hence restoring insulin production are gaining attention in translational diabetes research, and ß-cell replenishment has been the main focus for diabetes treatment. Significant findings in ß-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate ß-cells. In this review, we summarize current knowledge on the mechanisms implicated in ß-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to ß-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting ß-cell proliferation, inducing non-ß-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for ß-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous ß-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/uso terapêutico , Transdiferenciação Celular , Diferenciação Celular
8.
Dev Cell ; 59(8): 961-978.e7, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38508181

RESUMO

Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.


Assuntos
Transdiferenciação Celular , Embrião de Mamíferos , Inflamação , Transdução de Sinais , Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma/genética , Células Endoteliais/metabolismo
9.
Cells ; 13(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38391963

RESUMO

The classification of tumors into subtypes, characterized by phenotypes determined by specific differentiation pathways, aids diagnosis and directs therapy towards targeted approaches. However, with the advent and explosion of next-generation sequencing, cancer phenotypes are turning out to be far more heterogenous than initially thought, and the classification is continually being updated to include more subtypes. Tumors are indeed highly dynamic, and they can evolve and undergo various changes in their characteristics during disease progression. The picture becomes even more complex when the tumor responds to a therapy. In all these cases, cancer cells acquire the ability to transdifferentiate, changing subtype, and adapt to changing microenvironments. These modifications affect the tumor's growth rate, invasiveness, response to treatment, and overall clinical behavior. Studying tumor subtype transitions is crucial for understanding tumor evolution, predicting disease outcomes, and developing personalized treatment strategies. We discuss this emerging hallmark of cancer and the molecular mechanisms involved at the crossroads between tumor cells and their microenvironment, focusing on four different human cancers in which tissue plasticity causes a subtype switch: breast cancer, prostate cancer, glioblastoma, and pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Neoplasias Pancreáticas , Masculino , Humanos , Transdiferenciação Celular , Processos Neoplásicos , Neoplasias da Mama/patologia , Microambiente Tumoral/genética
10.
Cells ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334648

RESUMO

The neurobiology of tumors has attracted considerable interest from clinicians and scientists and has become a multidisciplinary area of research. Neural components not only interact with tumor cells but also influence other elements within the TME, such as immune cells and vascular components, forming a polygonal relationship to synergistically facilitate tumor growth and progression. This review comprehensively summarizes the current state of the knowledge on nerve-tumor crosstalk in head and neck cancer and discusses the potential underlying mechanisms. Several mechanisms facilitating nerve-tumor crosstalk are covered, such as perineural invasion, axonogenesis, neurogenesis, neural reprogramming, and transdifferentiation, and the reciprocal interactions between the nervous and immune systems in the TME are also discussed in this review. Further understanding of the nerve-tumor crosstalk in the TME of head and neck cancer may provide new nerve-targeted treatment options and help improve clinical outcomes for patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Tecido Nervoso , Humanos , Neoplasias de Cabeça e Pescoço/terapia , Transdiferenciação Celular
11.
Transl Psychiatry ; 14(1): 127, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418498

RESUMO

The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.


Assuntos
Transdiferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Reprodutibilidade dos Testes , Encéfalo , Células-Tronco Pluripotentes Induzidas/fisiologia , Diferenciação Celular , Organoides
12.
ACS Chem Neurosci ; 15(2): 222-229, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38164894

RESUMO

Development of multifunctional theranostics is challenging and crucial for deciphering complex biological phenomena and subsequently treating critical disease. In particular, development of theranostics for traumatic brain injury (TBI) and understanding its repair mechanism are challenging and highly complex areas of research. Recently, there have been interesting pieces of research work demonstrated that a small molecule-based neuroregenerative approach using stem cells has potential for future therapeutic lead development for TBI. However, these works demonstrated the application of a mixture of multiple molecules as a "chemical cocktail", which may have serious toxic effects in the differentiated cells. Therefore, development of a single-molecule-based potential differentiating agent for human mesenchymal stem cells (hMSCs) into functional neurons is vital for the upcoming neuro-regenerative therapeutics. This lead could be further extraploted for the design of theranostics for TBI. In this study, we have developed a multifunctional single-molecule-based fluorescent probe, which can image the transdifferentiated neurons as well as promote the differentiation process. We demonstrated a promising class of fluorescent probes (CP-4) that can be employed to convert hMSCs into neurons in the presence of fibroblast growth factor (FGF). This fluorescent probe was used in cellular imaging as its fluorescence intensity remained unaltered for up to 7 days of trans-differentiation. We envision that this imaging probe can have an important application in the study of neuropathological and neurodegenerative studies.


Assuntos
Lesões Encefálicas Traumáticas , Células-Tronco Mesenquimais , Humanos , Corantes Fluorescentes/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Transdiferenciação Celular
13.
Cell Commun Signal ; 22(1): 48, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233853

RESUMO

BACKGROUND: Interferon Regulatory Factor 3 (IRF3) is a transcription factor that plays a crucial role in the innate immune response by recognizing and responding to foreign antigens. Recently, its roles in sterile conditions are being studied, as in metabolic and fibrotic diseases. However, the search on the upstream regulator for efficient pharmacological targeting is yet to be fully explored. Here, we show that G protein-coupled receptors (GPCRs) can regulate IRF3 phosphorylation through of GPCR-Gα protein interaction. RESULTS: IRF3 and target genes were strongly associated with fibrosis markers in liver fibrosis patients and models. Conditioned media from MIHA hepatocytes overexpressing IRF3 induced fibrogenic activation of LX-2 hepatic stellate cells (HSCs). In an overexpression library screening using active mutant Gα subunits and Phos-tag immunoblotting, Gαs was found out to strongly phosphorylate IRF3. Stimulation of Gαs by glucagon or epinephrine or by Gαs-specific designed GPCR phosphorylated IRF3. Protein kinase A (PKA) signaling was primarily responsible for IRF3 phosphorylation and Interleukin 33 (IL-33) expression downstream of Gαs. PKA phosphorylated IRF3 on a previously unrecognized residue and did not require reported upstream kinases such as TANK-binding kinase 1 (TBK1). Activation of Gαs signaling by glucagon induced IL-33 production in hepatocytes. Conditioned media from the hepatocytes activated HSCs, as indicated by α-SMA and COL1A1 expression, and this was reversed by pre-treatment of the media with IL-33 neutralizing antibody. CONCLUSIONS: Gαs-coupled GPCR signaling increases IRF3 phosphorylation through cAMP-mediated activation of PKA. This leads to an increase of IL-33 expression, which further contributes to HSC activation. Our findings that hepatocyte GPCR signaling regulates IRF3 to control hepatic stellate cell transdifferentiation provides an insight for understanding the complex intercellular communication during liver fibrosis progression and suggests therapeutic opportunities for the disease. Video Abstract.


Assuntos
Células Estreladas do Fígado , Interleucina-33 , Humanos , Interleucina-33/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Transdiferenciação Celular , Meios de Cultivo Condicionados , Glucagon/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fibrose
14.
ESC Heart Fail ; 11(1): 167-178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872863

RESUMO

AIMS: Transforming growth factor ß (TGF-ß) signalling is one of the critical pathways in fibroblast activation, and several drugs targeting the TGF-ß/Smad signalling pathway in heart failure with cardiac fibrosis are being tested in clinical trials. Some caveolins and cavins, which are components of caveolae on the plasma membrane, are known for their association with the regulation of TGF-ß signalling. Cavin-2 is particularly abundant in fibroblasts; however, the detailed association between Cavin-2 and cardiac fibrosis is still unclear. We tried to clarify the involvement and role of Cavin-2 in fibroblasts and cardiac fibrosis. METHODS AND RESULTS: To clarify the role of Cavin-2 in cardiac fibrosis, we performed transverse aortic constriction (TAC) operations on four types of mice: wild-type (WT), Cavin-2 null (Cavin-2 KO), Cavin-2flox/flox , and activated fibroblast-specific Cavin-2 conditional knockout (Postn-Cre/Cavin-2flox/flox , Cavin-2 cKO) mice. We collected mouse embryonic fibroblasts (MEFs) from WT and Cavin-2 KO mice and investigated the effect of Cavin-2 in fibroblast trans-differentiation into myofibroblasts and associated TGF-ß signalling. Four weeks after TAC, cardiac fibrotic areas in both the Cavin-2 KO and the Cavin-2 cKO mice were significantly decreased compared with each control group (WT 8.04 ± 1.58% vs. Cavin-2 KO 0.40 ± 0.03%, P < 0.01; Cavin-2flox/flox , 7.19 ± 0.50% vs. Cavin-2 cKO 0.88 ± 0.44%, P < 0.01). Fibrosis-associated mRNA expression (Col1a1, Ctgf, and Col3) was significantly attenuated in the Cavin-2 KO mice after TAC. α1 type I collagen deposition and non-vascular αSMA-positive cells (WT 43.5 ± 2.4% vs. Cavin-2 KO 25.4 ± 3.2%, P < 0.01) were reduced in the heart of the Cavin-2 cKO mice after TAC operation. The levels of αSMA protein (0.36-fold, P < 0.05) and fibrosis-associated mRNA expression (Col1a1, 0.69-fold, P < 0.01; Ctgf, 0.27-fold, P < 0.01; Col3, 0.60-fold, P < 0.01) were decreased in the Cavin-2 KO MEFs compared with the WT MEFs. On the other hand, αSMA protein levels were higher in the Cavin-2 overexpressed MEFs compared with the control MEFs (2.40-fold, P < 0.01). TGF-ß1-induced Smad2 phosphorylation was attenuated in the Cavin-2 KO MEFs compared with WT MEFs (0.60-fold, P < 0.01). Heat shock protein 90 protein levels were significantly reduced in the Cavin-2 KO MEFs compared with the WT MEFs (0.69-fold, P < 0.01). CONCLUSIONS: Cavin-2 loss suppressed fibroblast trans-differentiation into myofibroblasts through the TGF-ß/Smad signalling. The loss of Cavin-2 in cardiac fibroblasts suppresses cardiac fibrosis and may maintain cardiac function.


Assuntos
Cardiomiopatias , Fibroblastos , Animais , Camundongos , Miofibroblastos/metabolismo , Fibrose , Cardiomiopatias/patologia , Fator de Crescimento Transformador beta/metabolismo , Transdiferenciação Celular , RNA Mensageiro/metabolismo
15.
J Gastroenterol ; 59(2): 95-108, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962678

RESUMO

BACKGROUND: Autoimmune gastritis (AIG) is a prevalent chronic inflammatory disease with oncogenic potential that causes destruction of parietal cells and severe mucosal atrophy. We aimed to explore the distinctive gene expression profiles, activated signaling pathways, and their underlying mechanisms. METHODS: A comprehensive gene expression analysis was conducted using biopsy specimens from AIG, Helicobacter pylori-associated gastritis (HPG), and non-inflammatory normal stomachs. Gastric cancer cell lines were cultured under acidic (pH 6.5) conditions to evaluate changes in gene expression. RESULTS: Gastric mucosa with AIG had a unique gene expression profile compared with that with HPG and normal mucosa, such as extensively low expression of ATP4A and high expression of GAST and PAPPA2, which are involved in neuroendocrine tumorigenesis. Additionally, the mucosa with AIG and HPG showed the downregulation of stomach-specific genes and upregulation of small intestine-specific genes; however, intestinal trans-differentiation was much more prominent in AIG samples, likely in a CDX-dependent manner. Furthermore, AIG induced ectopic expression of pancreatic digestion-related genes, PNLIP, CEL, CTRB1, and CTRC; and a master regulator gene of the lung, NKX2-1/TTF1 with alveolar fluid secretion-related genes, SFTPB and SFTPC. Mechanistically, acidic conditions led to the downregulation of master regulator and stemness control genes of small intestine, suggesting that increased environmental pH may cause abnormal intestinal differentiation in the stomach. CONCLUSIONS: AIG induces diverse trans-differentiation in the gastric mucosa, characterized by the transactivation of genes specific to the small intestine, pancreas, and lung. Increased environmental pH owing to AIG may cause abnormal differentiation of the gastric mucosa.


Assuntos
Doenças Autoimunes , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Doenças Autoimunes/genética , Gastrite/genética , Gastrite/patologia , Mucosa Gástrica/patologia , Pâncreas/patologia , Transdiferenciação Celular
16.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
17.
J Biol Chem ; 300(1): 105534, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072050

RESUMO

Significant advances have been made in reprogramming various somatic cells into induced pluripotent stem cells (iPSCs) and in multi-lineage differentiation (transdifferentiation) into different tissues. These manipulable transdifferentiating techniques may be applied in cancer therapy. Limited works have been reported that cancer cell malignancy can be switched to benign phenotypes through reprogramming techniques. Here, we reported that two colorectal cancer (CRC) cell lines (DLD1, HT29) could be reprogrammed into iPSCs (D-iPSCs, H-iPSCs). D- and H-iPSCs showed reduced tumorigenesis. Furthermore, we successfully induced D- and H-iPSCs differentiation into terminally differentiated cell types such as cardiomyocyte, neuron, and adipocyte-like cells. Impressively, the differentiated cells exhibited further attenuated tumorigenesis in vitro and in vivo. RNA-Seq further indicated that epigenetic changes occurred after reprogramming and transdifferentiation that caused reduced tumorigenicity. Overall, our study indicated that CRC cells can be reprogrammed and further differentiated into terminally differentiated lineages with attenuation of their malignancy in vitro and in vivo. The current work sheds light on a potential multi-lineage differentiation therapeutic strategy for colorectal cancer.


Assuntos
Carcinogênese , Transdiferenciação Celular , Técnicas de Reprogramação Celular , Neoplasias Colorretais , Células-Tronco Pluripotentes Induzidas , Humanos , Carcinogênese/patologia , Diferenciação Celular/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia
18.
Adv Sci (Weinh) ; 11(9): e2308686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145971

RESUMO

Arterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Células Espumosas/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Transdiferenciação Celular , Epigênese Genética , Aterosclerose/genética
19.
Gastroenterology ; 166(5): 842-858.e5, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38154529

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplastic stroma surrounding most tumors. Activated stromal fibroblasts, namely cancer-associated fibroblasts (CAFs), play a major role in PDAC progression. We analyzed whether CAFs influence acinar cells and impact PDAC initiation, that is, acinar-to-ductal metaplasia (ADM). ADM connection with PDAC pathophysiology is indicated, but not yet established. We hypothesized that CAF secretome might play a significant role in ADM in PDAC initiation. METHODS: Mouse and human acinar cell organoids, acinar cells cocultured with CAFs and exposed to CAF-conditioned media, acinar cell explants, and CAF cocultures were examined by means of quantitative reverse transcription polymerase chain reaction, RNA sequencing, immunoblotting, and confocal microscopy. Data from liquid chromatography with tandem mass spectrometry analysis of CAF-conditioned medium and RNA sequencing data of acinar cells post-conditioned medium exposure were integrated using bioinformatics tools to identify the molecular mechanism for CAF-induced ADM. Using confocal microscopy, immunoblotting, and quantitative reverse transcription polymerase chain reaction analysis, we validated the depletion of a key signaling axis in the cell line, acinar explant coculture, and mouse cancer-associated fibroblasts (mCAFs). RESULTS: A close association of acino-ductal markers (Ulex europaeus agglutinin 1, amylase, cytokeratin-19) and mCAFs (α-smooth muscle actin) in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1Cre (KPC) and LSL-KrasG12D/+; Pdx1Cre (KC) autochthonous progression tumor tissue was observed. Caerulein treatment-induced mCAFs increased cytokeratin-19 and decreased amylase in wild-type and KC pancreas. Likewise, acinar-mCAF cocultures revealed the induction of ductal transdifferentiation in cell line, acinar-organoid, and explant coculture formats in WT and KC mice pancreas. Proteomic and transcriptomic data integration revealed a novel laminin α5/integrinα4/stat3 axis responsible for CAF-mediated acinar-to-ductal cell transdifferentiation. CONCLUSIONS: Results collectively suggest the first evidence for CAF-influenced acino-ductal phenotypic switchover, thus highlighting the tumor microenvironment role in pancreatic carcinogenesis inception.


Assuntos
Células Acinares , Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Transdiferenciação Celular , Laminina , Neoplasias Pancreáticas , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Células Acinares/metabolismo , Células Acinares/patologia , Humanos , Camundongos , Transdução de Sinais , Técnicas de Cocultura , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Microambiente Tumoral , Metaplasia/patologia , Metaplasia/metabolismo , Organoides/metabolismo , Organoides/patologia
20.
Diabetes Obes Metab ; 26(1): 16-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845573

RESUMO

The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting ß-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of ß-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing ß-cell dedifferentiation or promoting the transdifferentiation of non-ß-cells towards an insulin-positive ß-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing ß-cell loss or generating new ß-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent ß-cell decline in diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Plasticidade Celular , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Transdiferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...